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Abstract—Adverse weather introduces disruptive noise into
LiDAR data within autonomous driving systems, compromis-
ing the accuracy and range of 3D perception. Mitigating this
challenge for high-precision noise removal becomes intricate due
to the varying noise distributions at different distances. A novel
spatiotemporal denoising network, AdWeatherNet, is proposed to
address this problem. The Spatial Encoder module dynamically
encodes spatial features using a designed density evaluation
model. Additionally, the Temporal Differential Attention module
effectively leverages temporal variation in adjacent point clouds
to identify and accurately remove noise. To drive the research, we
also introduce an adverse weather dataset, named the AdScenes
dataset, which features point-wise annotations and a wide variety
of weather conditions, making it one of the largest comprehensive
datasets in this domain. The experimental results demonstrate the
effectiveness of our method, with a remarkable improvement of
+9.5% of IoU in rainy scenes, +5.9% of IoU in snowy scenes,
and +1.9% of IoU in foggy scenes. Compared to the SOTA,
AdWeatherNet enhances the mAP of object detection by an
average of +1.8% across all weather conditions. Our method
contributes to the development of reliable LiDAR perception
systems, fostering the development of autonomous vehicles.

Index Terms—point cloud denoising, adverse weather, all-
weather perception, autonomous driving

I. INTRODUCTION

In adverse weather, the quality of light detection and ranging
(LiDAR) sensor data degrades because of interactions with
airborne particles, including rain droplets [1]–[3], snowflakes
[3]–[7] and fog [3], [8], [9]. Denoising to enhance the in-
tegrity of the raw data has been a perennial pursuit, despite
significant efforts, efficient denoising across all weather con-
ditions remains highly challenging. Because various physical
propagation result in distinct noise distribution. For instance,
the scattering and refraction of airborne particles disturb the
signal phase, leading to the convergence of the point clouds
and the loss of the target information. It is particularly evident
at close distances, as shown in the yellow region in Fig. 1(a).
Simultaneously, the reflection and absorption of the airborne
particles attenuate the signal intensity or hinder the signal from
being received, resulting in sparse point clouds, especially in
the distant area, as shown in the red region in Fig. 1(a). This
characteristic is referred to as the intrinsic property of point
clouds, which is “Near is dense, and far is sparse”. Therefore,
establishing a unified denoising framework to enhance the data
quality is crucial for autonomous driving and robot systems
[10], as demonstrated by our results in Fig. 1(b).

* is corresponding author.

(b) Denoised point clouds

(a) Noisy point clouds

Fig. 1. The comparison between noisy and denoised point clouds in adverse
weather. Sparse points are in the red boxes, and dense points are in the yellow
boxes. (a) The view of raw point clouds in adverse weather. (b) The view of
denoised point clouds by AdWeatherNet.

Both filtering algorithms [11]–[16] and deep-learning algo-
rithms [17]–[19] face challenges in effectively removing noise
across all weather conditions due to the difficulty in discerning
noise within the dynamic point cloud distribution, charac-
terized by the ”Near is dense, and far is sparse” principle.
As shown in Table I, the existing adverse weather denoising
datasets [3], [13], [18], [20]–[26] are limited in scale and scene
diversity, which hinders the model’s learning capacity and
can lead to overfitting. Moreover, these datasets typically lack
temporal continuity, even though distribution features within
a time window tend to be more robust.

In this paper, we initially introduce a denoising dataset,
named AdScenes dataset, rich in weather scenes for adverse
weather denoising, which also stands as one of the most exten-
sive datasets in this domain. Furthermore, we propose a novel
denoising network, named AdWeatherNet, designed to identify
the dynamic disparity between noise and point clouds across
both spatial and temporal channels. Experimental results show
that our proposed method outperforms the existing methods,
achieving improvements of +2.8%, +6.1%, and +3.6% in
Precision, as well as +9.5%, +5.9%, and +1.9% in IoU for
rainy, snowy, and foggy scenes, respectively. Furthermore,
our method enhances the mAP in object detection by +1.8%
across all adverse weather, underscoring its significance for
downstream perception tasks.
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TABLE I
COMPARISON AMONG MAJOR POINT CLOUD DATASETS.

Dataset Type Task Annotation Weather
Rain Snow Fog Multi-intensities

nuScenes Real detection bbox
√ × × ×

Waymo Real detection bbox
√ × × ×

Oxford RobotCar Real detection bbox
√ √ × ×

CADC Real detection bbox × √ × ×
STF Real detection bbox

√ √ √ ×
Panoptic nuScenes Real segmentation point-wise

√ × × ×
SemanticKITTI Real segmentation point-wise

√ × √ ×
Semantic STF Real segmentation point-wise

√ √ √ ×
WADS Real denoising point-wise × √ × ×

SnowyKITTI Synthetic denoising point-wise × √ × ×
AdScenes Real/Synthetic denoising/detection point-wise/bbox

√ √ √ √

II. THE AdScenes DATASET

We have constructed the AdScenes dataset, a point-wise an-
notated point cloud dataset, including all adverse weather sce-
narios. The dataset is divided into the training and testing parts.
The testing part includes real-world rainy and synthesized
foggy weather scenes. The rainy data is captured by our self-
developed LiDAR and camera array synchronous perception
system. The training part is enriched using the SemanticKITTI
dataset [23] through the LiDAR Light Scattering Enhancement
Model (LISA) [27], a physics-based simulation model of
particles in the air. This part includes 3 weather scenes: rain,
snow, and fog, each with 3 intensity levels: moderate, heavy,
and extreme. It covers 10 traffic scenarios, including roads,
intersections, sidewalks, parking lots, highways, vegetation,
terrain, buildings, poles, and others, and involves 8 types of
traffic participants, including cars, buses, bicycles, motorcy-
cles, pedestrians, cyclists, motorcyclists, and other vehicle. The
whole dataset is approximately 23 GB with 12.1 billion point-
wise annotations. The Adscenes dataset categorizes noise as a
positive sample (label: 1) and the clean background, including
vehicles and pedestrians, etc, as a negative sample (label: 0).

As can be seen from Table I, the proposed Adscenes dataset
stands out as one of the most extensive datasets of all-weather
scenes in the field of point cloud denoising. In terms of the
diversity of weather scenes, this dataset also surpasses the
existing dataset focused on point cloud semantic denoising.

III. METHOD

Our proposed framework, named AdWeatherNet, takes 3D
U-Net as the backbone as shown in Fig. 2(a). Except for the
U-Net, it mainly consists of 3 parts: (1) SE utilizes the density
prediction model introduced in this paper to dynamically
encode features, thereby enhancing the efficiency of encoding
the point cloud characterized by “Near is dense, and far is
sparse”, as shown in Fig. 2(b). (2) TDA utilizes the variation
of adjacent point clouds in the temporal dimension to leverage
the consistent features, as shown in Fig. 2 (c). (3) Semantic
Outlier Removal is a filter to remove noisy points caused by
airborne particles in adverse weather by semantic information
extracted by the segmentation head, in which there is a 3D
convolution layer with 3× 3× 3 kernel.

A. Spatial Encoder

The existing encoding [17]–[19] often results in a notable
loss of features from distant point clouds, which are equally
important. To tackle this problem, we propose SE, a dynamic
encoder designed to assist the model in learning distinct
features at various distances. Assuming a uniform distribution
of multi-class targets in the outdoor scene, the density of point
clouds is inversely proportional to the square of the distance.
We thereby formulate a non-linear regression to predict the
density of point clouds on the distance, which is given by:

σ = γ
Num

d2
, (1)

where density σ, density-distance coefficient γ, the total
number of point clouds Num, and the distance d. The laser
experiences exponential attenuation due to the scattering of
airborne particles like raindrops. Therefore, the coefficient of
kernel is calculated based on the density prediction in Eq. (1).

δ =
σ

σ0

d

dmax

√
e2αd, (2)

where δ, σ0, and dmax are kernel size, the expected density,
and the max measured range, respectively. α is the scattering
coefficient of airborne particles.

Based on Eq. (2), we propose a density-adaptive 3D con-
volution that employs a larger kernel size to capture more
features in sparser point clouds. This allows us to extract
additional features with a larger receptive field. The final
output is obtained using max pooling to exploit the maximum
value of features.

B. Temporal Differential Attention

The TDA module is designed to harness larger discrepancies
in noisy features relative to clean features. This understanding
allows us to forecast a differential attention map ad using the
sigmoid confidence as specified in Eq. (3). The function h(·)
signifies a submanifold sparse convolution that aims to extract
features while maintaining the sparsity of point clouds. The
features ft−1 and ft are the extracted features at time t − 1
and t respectively, each having dimensions of N × C.

ad = sigmoid(h(ft−1) · (ft − ft−1)), (3)

fd = adft, (4)
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(a) The framework of AdWeatherNet.
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Fig. 2. The architecture of the proposed AdWeatherNet. Here white points are noise and blue points are clean environments. The inputs are 2 scans of
adjacent point clouds, and the output is a clean point cloud. (a) The framework of AdWeatherNet. (b) The illustration of SE. (c) The illustration of TDA.

ac = softmax(h(p(fd))), (5)

fc = acfd, (6)

O = fc + ft, (7)

where fc and fc are differential attentive features and channel
attentive features, respectively. O is the final output feature of
the TDA module. The channel attention map ac employs the
max value of differential attention from each voxel of point
clouds, using softmax confidences as described in Eq. (5). The
function p(·) represents a max pooling operation. The variation
in clean information is subtle, causing it to be overshadowed
by noisy features in the differential attention map. To address
this issue, a residual block is incorporated. Features from the
current frame of point clouds are point-wise added to the
channel attention map, resulting in the final output.

C. Network and Training Details

The proposed denoising network includes 3 key steps.
Firstly, SE and TDA are applied to extract spatiotemporal
features from the input raw point cloud data. Secondly, these
features are introduced into a U-Net architecture with a seg-
mentation head, which contains a 3D convolution layer with
3×3×3 kernel size to perform further processing on the data.
To remove noisy points caused by airborne particles such as
snowflakes and rain droplets, Softmax confidences are utilized
with a mask map that is normalized in the range of [0, 1].
Finally, the semantic outlier removal is applied to remove the
predicted noisy points and yield cleaner point clouds.

The training process involves a weight-wise sum of two loss
functions to optimize the network performance.

L = βLls + (1− β)Lce, (8)

where Lls is a Lovász Softmax [28] loss and Lce is a standard
cross-entropy loss. β is a weighted coefficient.

IV. EXPERIMENTS AND RESULTS

Our AdWeatherNet is compared with 5 state-of-the-art
(SOTA) algorithms that are representative of point cloud
denoising. DROR* [12] and DSOR* [13] are the state-of-
the-art methods among density-based outlier removal methods.
LIOR [14] is the representative low-intensity outlier removal
method. WeatherNet [17] is the first cnn-based deep learning
method. 4DenoiseNet [18] is the first network that uses the
temporal information of adjacent point clouds.

A. Quantitative and Qualitative Results
As shown in Table II, our proposed method improves the

Precision by +2.8%, the Recall by +6.2% and the IoU by
+9.5% when tested in the rainy scenes. It additionally achieves
superior performance compared to the SOTA algorithms, ex-
hibiting improvements of +5.9% and +1.9% in IoU, as well as
+6.1% and +3.6% in Precision for snowy and foggy scenes,
respectively. Among all weather conditions, ours achieves no
lower than a high Recall of 96.4%. It proves that AdWeather-
Net has the best performance in robust and accurate denoising
across all weather conditions. It is noteworthy that the high
Precision and Recall signify AdWeatherNet’s effectiveness in
both denoising and feature extraction.

As shown in Fig. 3, the results of filtering methods, such
as DROR, DSOR, and LIOR preserve more noise than the
deep learning methods. WeatherNet exhibits poorer perfor-
mance than the other deep learning methods. AdWeatherNet is
slightly better than 4DenoiseNet for denoising. When focusing
on pedestrians and vehicles in scenes, AdWeatherNet preserves
more complete contours of these objects than 4DenoiseNet.
In summary, AdWeatherNet has the best performance of
denoising among all the methods.

As shown in Table IV, ablation study results show that the
baseline with the Baseline-TDA achieves the second-highest
precision of 96.2% and the highest recall of 98.6%. The TDA
module slightly outperformed the SE module in enhancing
overall performance.
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Fig. 3. Visual results of point cloud denoising algorithms. (a) raw point clouds, where rainy scenes are on the top and snowy scenes are on the bottom. (b)
Results of DROR filter. (c) Results of DSOR filter. (d) Results of LIOR filter. (e) Results of WeatherNet. (f) Results of 4DenoiseNet. (g) Results of ours. *:
no training required.

TABLE II
QUANTITATIVE EVALUATION. TRAINING AND INFERENCE ARE BOTH CONDUCTED ON NVIDIA GTX 3090 GPU.

*: NO TRAINING REQUIRED. BOLD FONT: THE STATE-OF-THE-ART RESULTS.

Weather Rain Snow Fog
Precision Recall IoU Precision Recall IoU Precision Recall IoU

DROR* 83.4 91.2 81.6 71.5 91.9 63.6 76.1 89.9 60.9
DSOR* 79.8 91.4 77.5 76.6 94.7 74.6 79.5 93.3 72.4
LIOR* 70.6 80.7 59.8 72.4 83.5 63.3 70.6 80.1 60.7

WeatherNet 88.4 87.2 86.4 87.6 97.8 85.0 83.7 95.2 76.5
4DenoiseNet 96.5 92.3 88.3 91.5 98.7 90.3 93.2 96.2 85.2

AdWeatherNet 99.3 98.5 97.8 97.6 98.5 96.2 96.8 96.4 87.1

TABLE III
THE IMPROVEMENT OF OBJECT DETECTION IN ADVERSE WEATHER.

Weather mAP
Raw 4DenoiseNet AdWeatherNet Gain

Rain 73.52 76.33 79.91 +3.58
Snow 69.78 73.33 74.59 +1.26
Fog 75.87 77.52 78.12 +0.60

B. Enhanced Object Detection

Noise can significantly affect 3D object detection by dis-
torting the object geometry. Our proposed method focuses
on removing noise from point clouds, leading to significant
improvements in object detection. We choose Pointpillars [29]
as an object detection network and compare the results of
3D object detection using raw data with the denoised data
from our method and 4DenoiseNet. As shown in Table III,
denoised point clouds improve the mAP of object detection
by +6.39%, +4.81%, and +2.25% in rainy, snowy, and foggy
scenes. Compared with the SOTA algorithm, it improves by
+3.58%, +1.26%, and +0.60% respectively. In foggy scenes,
there is a relatively minor improvement in the mAP of object
detection. This is attributed to the fact that fog has a stronger
impact on the absorption and refraction of laser beams than
on reflection. In this particular scene, noise is not the primary
influencing factor.

V. CONCLUSION

AdWeatherNet, a spatiotemporally attentive denoising net-
work, is proposed to improve the quality of point clouds in

TABLE IV
ABLATION STUDY.

Metrics Precision Recall IoU
Baseline 93.4 98.1 91.8

Baseline-SE 95.8 98.5 94.4
Baseline-TDA 96.2 98.6 94.9

Full Model 97.6 98.5 96.2

adverse weather. It establishes a new SOTA benchmark in
point cloud denoising in adverse weather, including rain, snow,
and fog. It enhances both Precision and Recall, reflecting a
decrease in the inaccuracies associated with false positives
and missed recognitions of noise. It proves that AdWeatherNet
improves the mAP of 3D object detection in adverse weather
as well, which shows the potential to become an essential com-
ponent for LiDAR perception systems. The AdScenes dataset
is one of the largest and most diverse point cloud semantic
denoising datasets. Building upon our work, a promising
avenue for future research is real-time 3D perception for
autonomous driving systems.
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